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Abstract. We focus on two aspects of CPT invariance in neutral meson–antimeson (M0M̄0) mixing: (1)
tests of CPT invariance, using only the property of “lack of vacuum regeneration”, which occurs as a part
of the well-known Lee–Oehme–Yang (LOY) theory; (2) methods for extracting the CPT -violating mixing
parameter θ through explicit calculations by fully using the LOY-type theory. In the latter context, we
demonstrate the importance of the C-even |M0M̄0〉 state. In particular, by measuring the time dependence
of opposite-sign dilepton events arising from decays of the C-even and C-odd |M0M̄0〉 states, θ may be
disentangled from the parameters λ+ and λ̄− characterizing violations of the ∆F = ∆Q rule. Furthermore,
these two parameters may also be determined. The same is true if one uses like-sign dilepton events arising
from only the C-even |M0M̄0〉 state.

1 Introduction

The usual phenomenology of the complex formed by the
neutral flavored meson M0 (M0 = K0, D0, B0

d, B0
s ) and

its antiparticle M̄0 is based on the Weisskopf–Wigner ap-
proximation (WWA) which is incorporated into theories
of the Lee–Oehme–Yang (LOY) type [1–3]. This complex
is investigated extensively for valuable studies like those of
the discrete symmetries CP , T and CPT , and of physics
beyond the standard model (for a review, see [4]). So far,
the only known CP and T non-invariances have arisen in
measurements on the M0M̄0 complex, while CPT conser-
vation is at present consistent with all existing data [5].
Therefore, testing CPT invariance at the phenomenologi-
cal level is an important issue (see, e.g., [6]). The purpose
of this paper is to consider some tests of CPT invariance
in the mixing ofM0 and M̄0, at two levels [7] of the WWA.
We will consider the following situations:
(1) transitions of single M0 and M̄0 mesons into M0 or
M̄0; this would require flavor tagging of the initial and
final states;
(2) transitions of single M0 and M̄0 mesons into decay
channels (e.g., ππ, π�ν, . . .); here, only the initial states
have to be tagged for flavor;
(3) transitions of the C-even and C-odd correlated
|M0M̄0〉 states into two flavored mesons (M0, M̄0); this
would require flavor tagging of the final states;
(4) transitions of these correlated states into decay chan-
nels, without need for flavor tagging.
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We will demonstrate the importance of the C-even
state [8] – particularly for disentangling CPT violation
from violation of the ∆F = ∆Q rule (F means flavor and
may be S or C or B) in semileptonic decays; both these
violations could arise from physics beyond the standard
model. One may note that it is important to allow new
physics through violations of the ∆F = ∆Q rule if one is
looking for new physics through CPT violation, especially
because of the similarity [9,10] of the effects of these two
types of violations.

Let us briefly mention some tagging methods. For neu-
tral kaons, the CPLEAR [11] reactions p̄p → K+π−K̄0

K−π+K0 allow flavor tagging of the initial kaon by utiliz-
ing the identity of the accompanying charged kaons and
pions. This method is based only on strangeness conser-
vation in strong interactions. Similarly, the reactions [12]
K0p → K+n, K̄0p → π+Λ (see also [13]) may be used
for final-state tagging, also for decays of the correlated
|K0K̄0〉 states. For heavier flavors, one may also do final-
state tagging by using the flavor-conserving strong inter-
actions – e.g., the “jet charge method” (see, e.g., [14])
corresponding to the relevant flavored quark. This proce-
dure, used for B mesons, is a purely empirical procedure
of the “calibrated” type, wherein, briefly speaking, one es-
timates the sign of the charge of the parent flavored quark
by performing suitable weighted averages over charges of
the particle tracks in the jet produced by the flavored
quark; to make the analysis more reliable, the jets from
the parent quark and the parent antiquark are simulta-
neously considered. Apart from its empirical nature, the
procedure is general.
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2 Outline and formalism

The WWA is characterized by the introduction of two
independently propagating states |MH,L〉 which are linear
combinations of the flavor states:

|MH〉 = pH |M0〉 + qH |M̄0〉, |pH |2 + |qH |2 = 1,
|ML〉 = pL|M0〉 − qL|M̄0〉, |pL|2 + |qL|2 = 1,

(1)

where pH,L and qH,L are complex constants. Thus the time
evolution is described by

|MH,L〉 t→ ΘH,L(t)|MH,L〉 with ΘH,L(0) = 1, (2)

where t is the proper time and the ΘH,L are the propaga-
tion functions. By the same token, a crucial property of
the WWA is the lack of vacuum regeneration (called LVR
below), i.e, the absence of transitions |MH,L〉 → |ML,H〉
in the time evolution. Let us define the general probabil-
ity amplitudes for the transitions |M0〉 → |M0〉, |M0〉 →
|M̄0〉, |M̄0〉 → |M0〉 and |M̄0〉 → |M̄0〉, respectively, as
a(t), b(t), b̄(t) and ā(t). Then LVR gives [7]

b̄(t) = αb(t), (3)
ā(t) − a(t) = βb(t), (4)

where α and β are complex constants determined in terms
of pH,L and qH,L by

α =
pHpL

qHqL
and β =

pL

qL
− pH

qH
. (5)

Equations (3) and (4) may qualitatively be visualized as
follows. Using (i) (2), (ii) linearity of the transformation
of (1) and its inverse, and (iii) the general constraints
ā(0) = a(0) = 1, b(0) = b̄(0) = 0, one must have b(t), b̄(t)
and ā(t) − a(t) all proportional to ΘH(t) − ΘL(t). While
|α| �= 1 signifies T non-invariance, β �= 0 signifies CPT
non-invariance. Using (3) and (4), the transition rates can
be expressed as functions of only two amplitudes, say a
and b; therefore, in any theory using the LVR (e.g., the
LOY theory) these equations are often useful in algebraic
manipulations. The remaining part of the WWA can be
expressed as [7]

a+ ā = ΘH +ΘL, (6)
b = qHqL(ΘH −ΘL)/D, (7)

with D = pHqL + pLqH .
It is useful to define [4]

θ =
qH/pH − qL/pL

qH/pH + qL/pL
and

q

p
=

√
qHqL
pHpL

, (8)

where both the real and imaginary parts of the phase-
convention-independent parameter θ are in principle mea-
surable and violate both CP and CPT ; the quantity
|q/p| − 1 is a measure of CP and T violation in mixing.
Then we can write

α =
(
p

q

)2

and β = 2
p

q

θ√
1 − θ2

. (9)

With the parameters of (8), the description of the ampli-
tudes a, b, ā, b̄ in the full WWA is obtained as [4,15]

a(t) = g+(t) − θg−(t),
b(t) =

q

p

√
1 − θ2g−(t),

ā(t) = g+(t) + θg−(t),
b̄(t) =

p

q

√
1 − θ2g−(t),

(10)

where the functions g± are given by

g±(t) =
1
2

(ΘH(t) ±ΘL(t)) . (11)

So far, the functions ΘH,L have not been specified. The
exponential decay law of the WWA gives ΘH,L as

ΘH,L(t) = exp(−itλH,L) with λH,L = mH,L − i
2
ΓH,L,

(12)
where, as usual, mH,L are the real masses and ΓH,L the
real decay widths of |MH,L〉. In the following we will also
need the definitions ∆m = mH −mL and ∆Γ = ΓH −ΓL.
We shall use the expression “full WWA” for (10), (11) and
(12).

It is worth remarking that for unknown α and β, (3)
and (4) provide tests of the LVR property. T (and CP )
invariance gives, in general,

|b| = |b̄|, (13)

and CPT (and CP ) invariance requires, in general,

a = ā. (14)

Then, within the LVR, (13) means |α| = 1 and (14) means
β = 0. If CPT invariance, viz. (14) holds, it is not possi-
ble to test the proportionality of (ā − a) to b, which is a
characteristic of LVR. Thus, CPT invariance within the
LVR means (14) and (3); the characteristic LVR form of
(4) is then not relevant.

In the following sections, we focus on two subjects:
(1) tests of CPT invariance within the LVR, (2) explicit
calculations using the full WWA, with the aim of deter-
mining θ. In Sect. 3, we consider the one-time transitions
described by the four amplitudes a, b, ā, b̄. In Sect. 4 we
summarize, for reference and comparison, decays of single
M0 and M̄0 mesons, which have been extensively inves-
tigated; see, e.g., [9]. In Sect. 5, the two-time transitions
of the C-even and C-odd correlated M0M̄0 states |ψ±〉 to
M0M0, M̄0M̄0, M0M̄0 and M̄0M0 final states are con-
sidered. Section 6 is devoted to the two-time decays of the
correlated states |ψ±〉 into physical channels f and g. Sec-
tion 7 deals with explicit calculations by choosing f and g
as semileptonic channels – both like-sign and opposite-sign
dilepton events. Finally, Sect. 8 gives a summary.

3 Transitions of single mesons M0 or M̄0

to M0, M̄0

Let us first consider transitions of singleM0 or M̄0 mesons
to M0, M̄0, in analogy to the corresponding T invariance



G.V. Dass, W. Grimus: Tests of CPT invariance for neutral flavored meson–antimeson mixing 203

considerations of [11,16,17]. It has been argued [18] that
in order to avoid further assumptions (arising from the use
of weak-interaction decays as substitutes for flavor tags)
in the interpretation [18–20] of the data [11], one should
directly measure |a|, |b|, |ā| and |b̄|, and construct asym-
metries out of these. In particular, the experimentally in-
teresting asymmetries

K ≡ |b̄|2 − |b|2
|b̄|2 + |b|2 and A ≡ |ā|2 − |a|2

|ā|2 + |a|2 (15)

test T invariance and CPT invariance, respectively: K =
0 and A = 0. While the LVR relation (3) involving the
time-reversal parameter α gives a clear prediction for K,
namely [16,17]

K =
|α|2 − 1
|α|2 + 1

= constant, (16)

the corresponding LVR relation (4) involving the CPT pa-
rameter β does not give a simple and testable prediction
for A, because β and b are not rephasing-invariant [4] and
the t-dependent rephasing-invariant product βb is not eas-
ily accessible. However, the LVR relation (4) may be used
to get the bound

−|β| ≤ |ā| − |a|
|b| ≤ |β|. (17)

Unfortunately, this bound is not a clean equality test, in
contrast to (16).

If we use the full WWA, the appropriate CPT observ-
able A is obtained as

A =
|ā|2 − |a|2
|ā|2 + |a|2 = 2Re

[
θ
g−(t)
g+(t)

]
(18)

to first order in the CPT -violating parameter θ.

4 Decays of single M0, M̄0 mesons

We investigate now the decays |M0(t)〉 → |f〉 and |M̄0(t)〉
→ |f〉, where |M0(0)〉 = |M0〉 and |M̄0(0)〉 = |M̄0〉. These
have the decay rates

R(f, t) = |〈f |T |M0(t)〉|2 =
∣
∣a(t)Af + b(t)Āf

∣
∣2 , (19)

R̄(f, t) = |〈f |T |M̄0(t)〉|2 =
∣
∣ā(t)Āf + b̄(t)Af

∣
∣2 , (20)

where we have used the definitions

〈f |T |M0〉 = Af , 〈f |T |M̄0〉 = Āf . (21)

These decays have been discussed previously in the light
of CPT violation in mixing; see, e.g., [9]. We review them
here for comparison with our alternative method in Sect. 7.

In order to exploit the rates (19) and (20) for the de-
termination of θ, it is necessary to have information on the
decay amplitudes Af and Āf . Let us focus on semileptonic
decays with final states X�+ν� and X̄�−ν̄�, where X (X̄)

is a specific hadronic state. Allowing for transitions which
violate the ∆F = ∆Q rule, we introduce the rephasing-
invariant quantities [4]

λ+ =
q

p

Ā+

A+
and λ̄− =

p

q

A−
Ā−

, (22)

where A+ ≡ A�+ , Ā− ≡ Ā�− , and so on. For instance,
the CPLEAR Collaboration in [21] considers semileptonic
decays of tagged K0 and K̄0 with X = π−. Using the con-
venient notation R+(t) for having M0 at t = 0 decaying
semileptonically into �+, etc., one obtains [9]

R+(t) = |A+|2
∣
∣
∣g+(t) + g−(t)

(
λ+

√
1 − θ2 − θ

)∣
∣
∣
2
, (23)

R̄−(t) = |Ā−|2
∣
∣
∣g+(t) + g−(t)

(
λ̄−

√
1 − θ2 + θ

)∣
∣
∣
2
, (24)

R−(t) = |Ā−|2
∣
∣
∣
∣
q

p

∣
∣
∣
∣

2

×
∣
∣
∣g+(t)λ̄− + g−(t)

(√
1 − θ2 − θλ̄−

)∣
∣
∣
2
, (25)

R̄+(t) = |A+|2
∣
∣
∣
∣
p

q

∣
∣
∣
∣

2

×
∣
∣
∣g+(t)λ+ + g−(t)

(√
1 − θ2 + θλ+

)∣
∣
∣
2
. (26)

These four rates allow one to disentangle CPT violation
in mixing from violations of the ∆F = ∆Q rule [9].

In order to get a feeling for the experimental results of
[21], it is useful to compare the rates (23), (24), (25), (26)
with the corresponding ones in (9a)–(9d) of [21], which
were expressed there by using a particular rephasing non-
invariant parameterization. One finds the correspondences
λ+ ↔ −x, λ̄− ↔ −x̄∗, θ ↔ 2δ, (1 − |q/p|)/2 ↔ Reε,
(1 − |Ā−/A+|2)/4 ↔ Rey; all these supposedly small pa-
rameters were retained up to only the first order. Note
that the short-lived and long-lived kaons correspond, re-
spectively, to our states |ML〉 and |MH〉. Among the three
asymmetries constructed out of the four K0

e3 decay rates
in [21], the one relevant for the determination of θ is their
Aδ(t), which involves also the complex parameter λ̄−−λ+.
The result of [21] is

Reθ = (6.0 ± 6.6 ± 1.2) × 10−4,

Imθ = (−3.0 ± 4.6 ± 0.6) × 10−2,

Re(λ̄− − λ+) = (0.4 ± 2.6 ± 0.6) × 10−2,

Im(λ̄− − λ+) = (2.4 ± 4.4 ± 0.6) × 10−2,

(27)

where the first error is statistical and the second is system-
atic. Though the experimental results (27) are consistent
with θ = 0 and λ̄− − λ+ = 0, the large errors in these re-
sults could be concealing sizable violations of CPT invari-
ance and of the ∆S = ∆Q rule. For experimental reasons,

the full information contained in the four rates
(−)

R± (t)
was not accessible, and it turns out that the two com-
plex parameters λ̄− and λ+ were not fully separated [21].
Though the best (K0, K̄0) data presently available allow
one to determine θ (with sizable errors), they are unable
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to determine separately the ∆S = ∆Q rule-violating pa-
rameters; therefore, heavy (M0, M̄0) systems, wherein the
clean CPLEAR method of flavor tagging is not applicable,
are likely to pose more severe problems. Consequently, it
is interesting to have – for the purpose of obtaining the
above three complex parameters separately – an alterna-
tive procedure which does not require flavor tagging. We
shall see in Sect. 7 that semileptonic decays of C-even cor-
related states, in addition to those of the C-odd ones, may
provide such an alternative.

5 States of two mesons (M0, M̄0)
arising from correlated states |M0M̄0〉
Let us now consider the entangled states

|ψε〉 =
1√
2

[
|M0(k)〉 ⊗ |M̄0(−k)〉

+ ε|M̄0(k)〉 ⊗ |M0(−k)〉
]
, (28)

where ε = ±1 refers to the C-even and C-odd state, re-
spectively. First we discuss probabilities for finding
|M0(k)〉 (the momentum k pointing to the left-hand side)
at time t� and |M0(−k)〉 at time tr (on the right-hand
side), etc. (see, e.g., [22]):

Pε(M0, t�;M0, tr) =
1
2

∣
∣a�b̄r + εb̄�ar

∣
∣2 , (29)

Pε(M̄0, t�; M̄0, tr) =
1
2

|b�ār + εā�br|2 , (30)

Pε(M0, t�; M̄0, tr) =
1
2

∣
∣a�ār + εb̄�br

∣
∣2 , (31)

Pε(M̄0, t�;M0, tr) =
1
2

∣
∣b�b̄r + εā�ar

∣
∣2 , (32)

where
(−)
a �≡(−)

a (t�) and
(−)
a r≡(−)

a (tr), etc. No assumption
of any discrete symmetry or about the LOY theory and
WWA is made.

One may define the asymmetries [22]

Q1ε(t�, tr)=
Pε(M0, t�;M0, tr) − Pε(M̄0, t�; M̄0, tr)
Pε(M0, t�;M0, tr) + Pε(M̄0, t�; M̄0, tr)

, (33)

Q2ε(t�, tr)=
Pε(M0, t�; M̄0, tr) − Pε(M̄0, t�;M0, tr)
Pε(M0, t�; M̄0, tr) + Pε(M̄0, t�;M0, tr)

. (34)

For ε = −1, using LVR fully, i.e., (3) and (4), one gets

Q1−(t�, tr) =
|α|2 − 1
|α|2 + 1

= constant, (35)

which equals the one-time asymmetry K of (16), as previ-
ously noted [23,24]; neither CPT invariance nor T invari-
ance has been assumed.

Using CPT invariance and the LVR property, the C-
even case (ε = +1) also gives the result (35). Using LVR

and then the WWA relations (10) for calculating Q1+, we
obtain

a�br + b�ar

=
q

p

√
1 − θ2 [g−(t� + tr) − 2θg−(t�)g−(tr)] , (36)

a�br + b�ar + 2βb�br

=
q

p

√
1 − θ2 [g−(t� + tr) + 2θg−(t�)g−(tr)] ; (37)

this gives, to first order in the symmetry-violating param-
eters,

Q1+ 	 |α|2 − 1
|α|2 + 1

− 4Re
[
θg−(t�)g−(tr)
g−(t� + tr)

]
. (38)

The first term on the right-hand side is, of course, identical
with Q1−. Therefore, it should be possible to extract θ
from the time dependence of (38). In order to get a feeling
for the second term on the right-hand side of (38), we
consider two limiting cases. For t�, tr � |2/∆Γ |, one gets

Q1+ −Q1− → 2Reθ sign(∆Γ ). (39)

On the other hand, for small times

t�, tr � 1/
√

(∆m)2 + (∆Γ/2)2,

one can show that

Q1+ −Q1− → 2Re
[
θ

(
i∆m+

1
2
∆Γ

)]
t�tr
t� + tr

. (40)

Now we come to the asymmetry Q2ε. Under the ex-
change t� ↔ tr, the probabilities (31) and (32) get ex-
changed, due to invariance under a 180◦ rotation. Using
(3), one can see that Q2ε is non-zero only if CPT invari-
ance does not hold, viz. a �= ā. This provides a test of CPT
invariance within LVR, for both ε = ±1: in the probabil-
ities (31) and (32), the part which is odd under t� ↔ tr
vanishes.

The LVR relations of (3) and (4) give

Pε(M0, t�; M̄0, tr) − Pε(M̄0, t�;M0, tr)

= Re

{(
a�ar + εαb�br + β

1
2
(a�br + b�ar)

)∗

×(a�br − b�ar)β

}

. (41)

This difference (and also Q2ε) is non-zero only for β �= 0.
Invoking the full WWA gives the asymmetries Q2ε, to first
order in θ, as

Q2− 	 2Re
[
θG2(t�, tr)
G1(t�, tr)

]

= −2Im
[
θ sin(t−∆λ/2)
cos(t−∆λ/2)

]
, (42)

Q2+ 	 2Re
[
θG2(t�, tr)
g+(t� + tr)

]

= −2Im
[
θ sin(t−∆λ/2)
cos(t+∆λ/2)

]
. (43)
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Here, we have defined the complex parameter ∆λ = λH −
λL = ∆m − i∆Γ/2 and the real parameters t± = t� ±
tr. Furthermore, G1(t�, tr) and G2(t�, tr) are, respectively,
even and odd under t� ↔ tr:

G1
2
(t�, tr) = g+(t�)g±(tr) − g−(t�)g∓(tr)

=
1
2

[
e−i(λLt�+λHtr) ± e−i(λHt�+λLtr)

]
. (44)

Again, one can see that the real and imaginary parts of θ
can be extracted from measurements of Q2− or Q2+.

6 Decays of the correlated states
into physical channels

We now come to the decays of |ψε〉 into the physical chan-
nel f detected at t� and the physical channel g detected
at tr. Then the rate is (see, e.g., [7]), assuming the closed
nature of the [(|M0〉, |M̄0〉) ↔ (|MH〉, |ML〉)] system,

Rε(f, t�; g, tr) (45)

=
1
2

∣
∣
∣
∣(a�b̄r + εb̄�ar)AfAg + (b�ār + εā�br)Āf Āg

+
(
a�ār + b�b̄r + ε(ā�ar + b̄�br)

) 1
2
(Af Āg + ĀfAg)

+
(
a�ār − b�b̄r − ε(ā�ar − b̄�br)

) 1
2
(Af Āg − ĀfAg)

∣
∣
∣
∣

2

,

wherein the transition amplitudes of (21) are used.
As for Pε(M0, t�; M̄0, tr), we observe that, in R+, the

part which is odd under t� ↔ tr vanishes if CPT invari-
ance holds within LVR. Within the full WWA, this result
has been noted earlier in an explicit calculation [8]; the
present result is based on simpler and more general con-
siderations. Taking into account both (3) and (4), the rate
R+ is given by

R+(f, t�; g, tr) =
1
2

∣
∣
∣
∣(a�br + b�ar)

×
(
αAfAg + Āf Āg + β

1
2
(Af Āg + ĀfAg)

)

+ 2b�br

(
βĀf Āg + α

1
2
(Af Āg + ĀfAg)

)

+ a�ar(Af Āg + ĀfAg)

+ (a�br − b�ar)β
1
2
(Af Āg − ĀfAg)

∣
∣
∣
∣

2

. (46)

This formula shows that, for β �= 0, R+ contains a part
odd under t� ↔ tr.

With the full WWA, the rates R∓ assume the well-
known forms [9]

R−(f, t�; g, tr)

=
1
2

∣
∣
∣
∣ [G1(t�, tr) + θG2(t�, tr)]Af Āg

− [G1(t�, tr) − θG2(t�, tr)] ĀfAg

+
√

1 − θ2G2(t�, tr)
(
p

q
AfAg − q

p
Āf Āg

)∣
∣
∣
∣

2

(47)

and [8]

R+(f, t�; g, tr)

=
1
2

∣
∣
∣
∣
∣
[
g+(t+) − 2θ2g− (t�) g− (tr)

] (
Af Āg + ĀfAg

)

+
p

q

√
1 − θ2 [g− (t+) − 2θg− (t�) g− (tr)]AfAg

+
q

p

√
1 − θ2 [g− (t+) + 2θg− (t�) g− (tr)] Āf Āg

+ θG2(t�, tr)
(
Af Āg − ĀfAg

)
∣
∣
∣
∣
∣

2

. (48)

7 Dilepton events from correlated decays

For explicit calculations, we first consider opposite-sign
dilepton events [10,25], i.e., semileptonic decays with f =
X�+ν� and g = X̄�−ν̄�. For illustrating our point, we
consider the same type of lepton on the two sides. The
amplitudes A+, etc. and the ∆F = ∆Q rule-violating pa-
rameters λ+ and λ̄− are defined in Sect. 4. We assume that
the quantities θ, λ+ and λ̄−, which describe “unexpected”
physics, are small; we retain contributions up to only the
first order in these quantities.

First, we want to show that, by observing the time
dependence of decays into opposite-sign dilepton events
of both |ψ+〉 and |ψ−〉, it is possible to disentangle θ, λ+,
and λ̄−. This is easily seen by comparing [9]

R−(�+, t�; �−, tr) (49)

=
1
2
|A+|2|Ā−|2 ∣

∣G1(t�, tr) + (θ − λ+ + λ̄−)G2(t�, tr)
∣
∣2 ,

with [8]

R+(�+, t�; �−, tr) =
1
2
|A+|2|Ā−|2

× ∣
∣g+(t+) + (λ+ + λ̄−)g−(t+) + θG2(t�, tr)

∣
∣2 . (50)

The part of the rate R−(�+, t�; �−, tr) which is odd under
t� ↔ tr determines the combination θ−λ+ + λ̄−, whereas
in the case of R+(�+, t�; �−, tr) the odd and even parts
depend on θ and λ+ + λ̄−, respectively.

Considering like-sign dilepton events [9,25], “new phy-
sics” does not enter at first order for the C-odd state [9]:

R−(�+, t�; �+, tr) =
1
2
|A+|4

∣
∣
∣
∣
p

q

∣
∣
∣
∣

2

|G2(t�, tr)|2 (51)

and

R−(�−, t�; �−, tr) =
1
2
|Ā−|4

∣
∣
∣
∣
q

p

∣
∣
∣
∣

2

|G2(t�, tr)|2. (52)
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However, correlated decays of the C-even state into like-
sign dilepton events do contain “new physics” at first or-
der:

R+(�+, t�; �+, tr) (53)

=
1
2
|A+|4

∣
∣
∣
∣
p

q

∣
∣
∣
∣

2

|g−(t+) + 2λ+g+(t+) − 2θg−(t�)g−(tr)|2

and

R+(�−, t�; �−, tr) (54)

=
1
2
|Ā−|4

∣
∣
∣
∣
q

p

∣
∣
∣
∣

2 ∣
∣g−(t+) + 2λ̄−g+(t+) + 2θg−(t�)g−(tr)

∣
∣2 .

From these two rates, which are obviously symmetric un-
der t� ↔ tr, the quantities θ, λ+ and λ̄− could be disen-
tangled because the functions of t� and tr with which they
are associated are different.

A remark is now in order concerning the comparison
of the formulas of this section with experiment. In gen-
eral, the amplitudes A±, Ā± will depend on the detailed
configuration of the final state X�+ν� or X̄�−ν̄�, i.e., on
the particle content of X (X̄) and the momenta and po-
larizations of all particles in the final states. Let us denote
the sum over various choices of X (X̄) and various config-
urations of spins and momenta detected on the left-hand
side by 〈. . .〉� and the corresponding sum detected on the
right-hand side by 〈. . .〉r. Consider, as an example, the
rate R−(�+, t�; �+, tr). Taking into consideration the sum-
mation over the final configurations, we obtain (see also
[21,26])

〈R−(�+, t�; �+, tr)〉�,r

=
1
2

{

|G2(t�, tr)|2
∣
∣
∣
∣
p

q

∣
∣
∣
∣

2

〈|A+|2〉�〈|A+|2〉r

+ 2Re

[

G2(t�, tr)∗G1(t�, tr)
(
p

q

)∗

× (〈|A+|2〉�〈A∗
+Ā+〉r − 〈A∗

+Ā+〉�〈|A+|2〉r

)
]}

=
1
2

∣
∣
∣
∣
p

q

∣
∣
∣
∣

2

〈|A+|2〉�〈|A+|2〉r

× ∣
∣G2(t�, tr) +G1(t�, tr)(λr

+ − λ�
+)

∣
∣2 , (55)

where at most the first order in the small parameters θ
and

λr
+ =

q

p

〈A∗
+Ā+〉r

〈|A+|2〉r
, λ�

+ =
q

p

〈A∗
+Ā+〉�

〈|A+|2〉�
(56)

has been retained. We similarly obtain

〈R−(�−, t�; �−, tr)〉�,r

=
1
2

∣
∣
∣
∣
q

p

∣
∣
∣
∣

2

〈|Ā−|2〉�〈|Ā−|2〉r

× ∣
∣G2(t�, tr) +G1(t�, tr)(λ̄r

− − λ̄�
−)

∣
∣2 , (57)

where

λ̄r
− =

p

q

〈Ā∗
−A−〉r

〈|Ā−|2〉r
, λ̄�

− =
p

q

〈Ā∗
−A−〉�

〈|Ā−|2〉�
. (58)

The ratio of the rates in (55) and (57) has a constant
value if the ∆F = ∆Q rule holds, in which case the lep-
ton charge is the flavor tag; if, in addition, CPT invariance
in the amplitudes holds and if for a given side (viz. left or
right), the states and configurations summed over in (55)
and (57) are CPT -conjugates of each other, the constant
value is just the time-reversal parameter |p/q|4; see [23]
for corresponding remarks if tagging of the final flavored
mesons is not replaced by their semileptonic decays. On
the other hand, one now sees that, in 〈R−(�+, t�; �+, tr)〉�,r

and 〈R−(�−, t�; �−, tr)〉�,r, violations of the∆F = ∆Q rule
cancel if left- and right-hand sides are summed over iden-
tical states and configurations. Implicitly, we have made
this assumption of identical left and right summations in
all our results in (49)–(54), where the ∆F = ∆Q rule-
violating parameters λ+ and λ̄− should be perceived as
the effective parameters of (56) and (58), respectively (of
course, now we have λr

+ = λ�
+ and λ̄r

− = λ̄�
−). Equa-

tions (55) and (57) illustrate this point for (51) and (52),
respectively, and show the importance of identical left and
right summations.

8 Conclusions

In this paper we have discussed two items. Firstly, we have
proposed tests of CPT invariance within only the lack of
vacuum regeneration (LVR) property. This means testing
a = ā and b̄ ∝ b together (see (14) and (3)). The second
item is the determination, by assuming the full WWA,
of the parameter θ of (8), which is a measure of CPT
violation in M0M̄0 mixing. In the following, subscripts
∓ refer to the C-odd and C-even |M0M̄0〉 states |ψ∓〉 of
(28), respectively.

As for the first point, we have noted the following qual-
itative tests.
(i) The asymmetryQ1+(t�, tr) (see (33)) equalsQ1−(t�, tr)
of (35); these are asymmetries for transitions into M0M0

and M̄0M̄0 final states.
(ii) The asymmetries Q2∓(t�, tr) for M0M̄0 and M̄0M0

final states vanish. Correspondingly, the (t� ↔ tr)-odd
parts of the probabilities (31) and (32) vanish.
(iii) The (t� ↔ tr)-odd part of the decay rate R+(f, t�; g,
tr) of (46) vanishes.

The second item of our paper, viz. methods for the
determination of θ, involves explicit computations of ob-
servables within the full WWA. These observables include
the cases where θ = 0 would reproduce one of the above-
mentioned tests, i.e., Q1+ in (38), Q2− in (42), Q2+ in (43)
and R+ in (48). In addition, we have the rate R− in (47)
and, for one-time single meson transitions, the asymmetry
A in (18). Of these six observables which involve θ, the de-
cay rates R± involve also unknown decay amplitudes and,
therefore, cannot be directly used for the determination
of CPT violation in mixing.
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In view of the previous difficulties [8–10] in achieving
this last goal by using the decay rates R± for correlated
decays of the C-even and C-odd |M0M̄0〉 states, we have
further investigated semileptonic decays in this context.
We have shown in Sect. 7 (see also [8]) that the three com-
plex parameters θ, λ+ and λ̄−, where the latter two quan-
tities parameterize violations of the ∆F = ∆Q rule, may
be separately determined either by comparing the time de-
pendence of opposite-sign dilepton events from the state
|ψ−〉 with that from |ψ+〉, or by considering both possible
charges in the like-sign dilepton events from |ψ+〉 alone.
Note that, if one wishes to determine θ alone, it is sufficient
to consider the time dependence of only R+(�+, t�; �−, tr)
[8]. The disentanglement of the above-mentioned three pa-
rameters is – in principle – possible also by using semilep-
tonic decays of single mesons M0 and M̄0 (see [9] and
Sect. 4); however, that requires initial-state tagging. As
shown in Sect. 4, by considering the best presently avail-
able data [21], it is useful to have an alternative procedure
which does not require flavor tagging. Our proposal for
considering dilepton events from the decays of |ψ−〉 and
|ψ+〉 may provide such an alternative.

Though some of the experiments proposed in this pa-
per require difficult steps like flavor tagging and a study
of the decay of the C-even M0M̄0 state |ψ+〉 [27], the
importance of testing the fundamental property of CPT
invariance may make the effort worthwhile.
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